Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuroinformatics ; 21(2): 269-286, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36809643

RESUMEN

Magnetic resonance imaging (MRI) and light-sheet fluorescence microscopy (LSFM) are technologies that enable non-disruptive 3-dimensional imaging of whole mouse brains. A combination of complementary information from both modalities is desirable for studying neuroscience in general, disease progression and drug efficacy. Although both technologies rely on atlas mapping for quantitative analyses, the translation of LSFM recorded data to MRI templates has been complicated by the morphological changes inflicted by tissue clearing and the enormous size of the raw data sets. Consequently, there is an unmet need for tools that will facilitate fast and accurate translation of LSFM recorded brains to in vivo, non-distorted templates. In this study, we have developed a bidirectional multimodal atlas framework that includes brain templates based on both imaging modalities, region delineations from the Allen's Common Coordinate Framework, and a skull-derived stereotaxic coordinate system. The framework also provides algorithms for bidirectional transformation of results obtained using either MR or LSFM (iDISCO cleared) mouse brain imaging while the coordinate system enables users to easily assign in vivo coordinates across the different brain templates.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Animales , Ratones , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología , Imagen por Resonancia Magnética/métodos , Imagenología Tridimensional/métodos , Mapeo Encefálico/métodos , Cráneo/diagnóstico por imagen
2.
Zoology (Jena) ; 153: 126023, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35717730

RESUMEN

The large interspecific variation in marine mammal skull and dental morphology reflects ecological specialisations to foraging and communication. At the intraspecific level, the drivers of skull shape variation are less well understood, having implications for identifying putative local foraging adaptations and delineating populations and subspecies for taxonomy, systematics, management and conservation. Here, we assess the range-wide intraspecific variation in 71 grey seal skulls by 3D surface scanning, collection of cranial landmarks and geometric morphometric analysis. We find that skull shape differs slightly between populations in the Northwest Atlantic, Northeast Atlantic and Baltic Sea. However, there was a large shape overlap between populations and variation was substantially larger among animals within populations than between. We hypothesize that this pattern of intraspecific variation in grey seal skull shape results from balancing selection or phenotypic plasticity allowing for a remarkably generalist foraging behaviour. Moreover, the large overlap in skull shape between populations implies that the separate subspecies status of Atlantic and Baltic Sea grey seals is questionable from a morphological point of view.


Asunto(s)
Phocidae , Animales , Países Bálticos , Cabeza , Cráneo
3.
BMC Zool ; 7(1): 10, 2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-37170292

RESUMEN

BACKGROUND: Understanding the diversity of eyes is crucial to unravel how different animals use vision to interact with their respective environments. To date, comparative studies of eye anatomy are scarce because they often involve time-consuming or inefficient methods. X-ray micro-tomography (micro-CT) is a promising high-throughput imaging technique that enables to reconstruct the 3D anatomy of eyes, but powerful tools are needed to perform fast conversions of anatomical reconstructions into functional eye models. RESULTS: We developed a computing method named InSegtCone to automatically segment the crystalline cones in the apposition compound eyes of arthropods. Here, we describe the full auto-segmentation process, showcase its application to three different insect compound eyes and evaluate its performance. The auto-segmentation could successfully label the full individual shapes of 60-80% of the crystalline cones and is about as accurate and 250 times faster than manual labelling of the individual cones. CONCLUSIONS: We believe that InSegtCone can be an important tool for peer scientists to measure the orientation, size and dynamics of crystalline cones, leading to the accurate optical modelling of the diversity of arthropod eyes with micro-CT.

4.
Sci Rep ; 11(1): 24335, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34934089

RESUMEN

Super-resolution ultrasound imaging (SRUS) enables in vivo microvascular imaging of deeper-lying tissues and organs, such as the kidneys or liver. The technique allows new insights into microvascular anatomy and physiology and the development of disease-related microvascular abnormalities. However, the microvascular anatomy is intricate and challenging to depict with the currently available imaging techniques, and validation of the microvascular structures of deeper-lying organs obtained with SRUS remains difficult. Our study aimed to directly compare the vascular anatomy in two in vivo 2D SRUS images of a Sprague-Dawley rat kidney with ex vivo µCT of the same kidney. Co-registering the SRUS images to the µCT volume revealed visually very similar vascular features of vessels ranging from ~ 100 to 1300 µm in diameter and illustrated a high level of vessel branching complexity captured in the 2D SRUS images. Additionally, it was shown that it is difficult to use µCT data of a whole rat kidney specimen to validate the super-resolution capability of our ultrasound scans, i.e., validating the actual microvasculature of the rat kidney. Lastly, by comparing the two imaging modalities, fundamental challenges for 2D SRUS were demonstrated, including the complexity of projecting a 3D vessel network into 2D. These challenges should be considered when interpreting clinical or preclinical SRUS data in future studies.


Asunto(s)
Imagenología Tridimensional/métodos , Riñón/irrigación sanguínea , Riñón/diagnóstico por imagen , Ultrasonografía/métodos , Microtomografía por Rayos X/métodos , Animales , Masculino , Microvasos , Ratas , Ratas Sprague-Dawley
5.
Annu Rev Plant Biol ; 72: 823-846, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34143648

RESUMEN

The foliar microbiome can extend the host plant phenotype by expanding its genomic and metabolic capabilities. Despite increasing recognition of the importance of the foliar microbiome for plant fitness, stress physiology, and yield, the diversity, function, and contribution of foliar microbiomes to plant phenotypic traits remain largely elusive. The recent adoption of high-throughput technologies is helping to unravel the diversityand spatiotemporal dynamics of foliar microbiomes, but we have yet to resolve their functional importance for plant growth, development, and ecology. Here, we focus on the processes that govern the assembly of the foliar microbiome and the potential mechanisms involved in extended plant phenotypes. We highlight knowledge gaps and provide suggestions for new research directions that can propel the field forward. These efforts will be instrumental in maximizing the functional potential of the foliar microbiome for sustainable crop production.


Asunto(s)
Microbiota , Ecología , Fenotipo , Desarrollo de la Planta , Plantas
6.
Sci Rep ; 11(1): 12501, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34127711

RESUMEN

Dynamic tomography has become an important technique to study fluid flow processes in porous media. The use of laboratory X-ray tomography instruments is, however, limited by their low X-ray brilliance. The prolonged exposure times, in turn, greatly limit temporal resolution. We have developed a tomographic reconstruction algorithm that maintains high image quality, despite reducing the exposure time and the number of projections significantly. Our approach, based on the Simultaneous Iterative Reconstruction Technique, mitigates the problem of few and noisy exposures by utilising a high-quality scan of the system before the dynamic process is started. We use the high-quality scan to initialise the first time step of the dynamic reconstruction. We further constrain regions of the dynamic reconstruction with a segmentation of the static system. We test the performance of the algorithm by reconstructing the dynamics of fluid separation in a multiphase system. The algorithm is compared quantitatively and qualitatively with several other reconstruction algorithms and we show that it can maintain high image quality using only a fraction of the normally required number of projections and with a substantially larger noise level. By robustly allowing fewer projections and shorter exposure, our algorithm enables the study of faster flow processes using laboratory tomography instrumentation but it can also be used to improve the reconstruction quality of dynamic synchrotron experiments.

7.
Sensors (Basel) ; 21(4)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557230

RESUMEN

When 3D scanning objects, the objective is usually to obtain a continuous surface. However, most surface scanning methods, such as structured light scanning, yield a point cloud. Obtaining a continuous surface from a point cloud requires a subsequent surface reconstruction step, which is directly affected by any error from the computation of the point cloud. In this work, we propose a one-step approach in which we compute the surface directly from structured light images. Our method minimizes the least-squares error between photographs and renderings of a triangle mesh, where the vertex positions of the mesh are the parameters of the minimization problem. To ensure fast iterations during optimization, we use differentiable rendering, which computes images and gradients in a single pass. We present simulation experiments demonstrating that our method for computing a triangle mesh has several advantages over approaches that rely on an intermediate point cloud. Our method can produce accurate reconstructions when initializing the optimization from a sphere. We also show that our method is good at reconstructing sharp edges and that it is robust with respect to image noise. In addition, our method can improve the output from other reconstruction algorithms if we use these for initialization.

8.
Neuroinformatics ; 19(3): 433-446, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33063286

RESUMEN

In recent years, the combination of whole-brain immunolabelling, light sheet fluorescence microscopy (LSFM) and subsequent registration of data with a common reference atlas, has enabled 3D visualization and quantification of fluorescent markers or tracers in the adult mouse brain. Today, the common coordinate framework version 3 developed by the Allen's Institute of Brain Science (AIBS CCFv3), is widely used as the standard brain atlas for registration of LSFM data. However, the AIBS CCFv3 is based on histological processing and imaging modalities different from those used for LSFM imaging and consequently, the data differ in both tissue contrast and morphology. To improve the accuracy and speed by which LSFM-imaged whole-brain data can be registered and quantified, we have created an optimized digital mouse brain atlas based on immunolabelled and solvent-cleared brains. Compared to the AIBS CCFv3 atlas, our atlas resulted in faster and more accurate mapping of neuronal activity as measured by c-Fos expression, especially in the hindbrain. We further demonstrated utility of the LSFM atlas by comparing whole-brain quantitative changes in c-Fos expression following acute administration of semaglutide in lean and diet-induced obese mice. In combination with an improved algorithm for c-Fos detection, the LSFM atlas enables unbiased and computationally efficient characterization of drug effects on whole-brain neuronal activity patterns. In conclusion, we established an optimized reference atlas for more precise mapping of fluorescent markers, including c-Fos, in mouse brains processed for LSFM.


Asunto(s)
Encéfalo , Neuronas , Algoritmos , Animales , Encéfalo/diagnóstico por imagen , Imagenología Tridimensional , Ratones , Microscopía Fluorescente
9.
Front Plant Sci ; 11: 1181, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849731

RESUMEN

Image-based phenotype data with high temporal resolution offers advantages over end-point measurements in plant quantitative genetics experiments, because growth dynamics can be assessed and analysed for genotype-phenotype association. Recently, network-based camera systems have been deployed as customizable, low-cost phenotyping solutions. Here, we implemented a large, automated image-capture system based on distributed computing using 180 networked Raspberry Pi units that could simultaneously monitor 1,800 white clover (Trifolium repens) plants. The camera system proved stable with an average uptime of 96% across all 180 cameras. For analysis of the captured images, we developed the Greenotyper image analysis pipeline. It detected the location of the plants with a bounding box accuracy of 97.98%, and the U-net-based plant segmentation had an intersection over union accuracy of 0.84 and a pixel accuracy of 0.95. We used Greenotyper to analyze a total of 355,027 images, which required 24-36 h. Automated phenotyping using a large number of static cameras and plants thus proved a cost-effective alternative to systems relying on conveyor belts or mobile cameras.

10.
Meat Sci ; 146: 9-17, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30081378

RESUMEN

The fermentation process of salamis involves several parameters influencing taste, texture, and color of the salami. One significant parameter is the fermentation time. It is difficult to conduct sensory evaluations to assess the effect of time without introducing variation between observation days. It may be possible to overcome this by stalling or pausing the fermentation by deep-chilling the salamis. This study investigates the difference of non- and deep-chilled salamis with the use of a multispectral imaging system. The statistical investigation, based on image features relating to size, visual texture, and color of the sausages over time, showed that it may be possible to stall the fermentation process. It was shown that a statistical difference in the two kinds of samples is present. For the size feature the difference could be quantified into a number of days. However, for the important color feature only a statistical difference was observed, whereas the visual difference expressed in terms of ΔEab⁎ was barely present.


Asunto(s)
Color , Productos de la Carne/análisis , Animales , Fermentación , Manipulación de Alimentos/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Análisis Espectral/métodos , Temperatura
11.
Sci Rep ; 8(1): 10310, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29985439

RESUMEN

Light Sheet Fluorescence Microscopy (LSFM) of whole organs, in particular the brain, offers a plethora of biological data imaged in 3D. This technique is however often hindered by cumbersome non-automated analysis methods. Here we describe an approach to fully automate the analysis by integrating with data from the Allen Institute of Brain Science (AIBS), to provide precise assessment of the distribution and action of peptide-based pharmaceuticals in the brain. To illustrate this approach, we examined the acute central nervous system effects of the glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide. Peripherally administered liraglutide accessed the hypothalamus and brainstem, and led to activation in several brain regions of which most were intersected by projections from neurons in the lateral parabrachial nucleus. Collectively, we provide a rapid and unbiased analytical framework for LSFM data which enables quantification and exploration based on data from AIBS to support basic and translational discovery.


Asunto(s)
Mapeo Encefálico , Hipoglucemiantes/farmacología , Liraglutida/farmacología , Sistema Nervioso/efectos de los fármacos , Animales , Tronco Encefálico/metabolismo , Tronco Encefálico/patología , Ingestión de Alimentos , Receptor del Péptido 1 Similar al Glucagón/agonistas , Hipotálamo/metabolismo , Hipotálamo/patología , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Sistema Nervioso/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo
12.
Sci Rep ; 8(1): 2214, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29396502

RESUMEN

Through the use of Time-of-Flight Three Dimensional Polarimetric Neutron Tomography (ToF 3DPNT) we have for the first time successfully demonstrated a technique capable of measuring and reconstructing three dimensional magnetic field strengths and directions unobtrusively and non-destructively with the potential to probe the interior of bulk samples which is not amenable otherwise. Using a pioneering polarimetric set-up for ToF neutron instrumentation in combination with a newly developed tailored reconstruction algorithm, the magnetic field generated by a current carrying solenoid has been measured and reconstructed, thereby providing the proof-of-principle of a technique able to reveal hitherto unobtainable information on the magnetic fields in the bulk of materials and devices, due to a high degree of penetration into many materials, including metals, and the sensitivity of neutron polarisation to magnetic fields. The technique puts the potential of the ToF time structure of pulsed neutron sources to full use in order to optimise the recorded information quality and reduce measurement time.

13.
Endocrinology ; 159(2): 665-675, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29095968

RESUMEN

Glucagonlike peptide 1 (GLP-1) is a physiological regulator of appetite, and long-acting GLP-1 receptor (GLP-1R) agonists lower food intake and body weight in both human and animal studies. The effects are mediated through brain GLP-1Rs, and several brain nuclei expressing the GLP-1R may be involved. To date, the mapping of the complete location of GLP-1R protein in the brain has been challenged by lack of good antibodies and the discrepancy between mRNA and protein, especially relevant in neuronal axonal processes. Here, we present a specific monoclonal GLP-1R antibody for immunohistochemistry with murine tissue and show detailed distribution of GLP-1R expression, as well as mapping of GLP-1R mRNA by nonradioactive in situ hybridization. Semiautomated image analysis was performed to map the GLP-1R distribution to atlas plates from the Allen Institute for Brain Science. The GLP-1R was abundantly expressed in numerous regions, including the septal nucleus, hypothalamus, and brain stem. GLP-1R protein expression was also observed on neuronal projections in brain regions devoid of any mRNA that has not been observed in earlier reports. Taken together, these findings provide knowledge on GLP-1R expression in neuronal cell bodies and neuronal projections.


Asunto(s)
Encéfalo/metabolismo , Receptor del Péptido 1 Similar al Glucagón/genética , Hibridación in Situ/métodos , Animales , Anticuerpos/análisis , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Masculino , Ratones , Neuronas/metabolismo
14.
Appl Opt ; 56(27): 7679-7690, 2017 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-29047754

RESUMEN

Transparent objects require acquisition modalities that are very different from the ones used for objects with more diffuse reflectance properties. Digitizing a scene where objects must be acquired with different modalities requires scene reassembly after reconstruction of the object surfaces. This reassembly of a scene that was picked apart for scanning seems unexplored. We contribute with a multimodal digitization pipeline for scenes that require this step of reassembly. Our pipeline includes measurement of bidirectional reflectance distribution functions and high dynamic range imaging of the lighting environment. This enables pixelwise comparison of photographs of the real scene with renderings of the digital version of the scene. Such quantitative evaluation is useful for verifying acquired material appearance and reconstructed surface geometry, which is an important aspect of digital content creation. It is also useful for identifying and improving issues in the different steps of the pipeline. In this work, we use it to improve reconstruction, apply analysis by synthesis to estimate optical properties, and to develop our method for scene reassembly.

15.
Appl Opt ; 55(14): 3840-6, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27168301

RESUMEN

Diffuse reflectance measurements are useful for noninvasive inspection of optical properties such as reduced scattering and absorption coefficients. Spectroscopic analysis of these optical properties can be used for particle sizing. Systems based on optical fiber probes are commonly employed, but their low spatial resolution limits their validity ranges for the coefficients. To cover a wider range of coefficients, we use camera-based spectroscopic oblique incidence reflectometry. We develop a noninvasive technique for acquisition of apparent particle size distributions based on this approach. Our technique is validated using stable oil-in-water emulsions with a wide range of known particle size distributions. We also measure the apparent particle size distributions of complex dairy products. These results show that our tool, in contrast to those based on fiber probes, can deal with a range of optical properties wide enough to track apparent particle size distributions in a typical industrial process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...